

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

Departamento de Electrónica, Telecomunicaciones y Redes de Información

LABORATORIO DISPOSITIVOS ELECTRÓNICOS

PRÁCTICA N° 3

1 TEMA

SIMULACIÓN Y MEDICIONES DE CIRCUITOS BÁSICOS PARTE 1

2 OBJETIVO

- 2.1 Familiarizar al estudiante con la interfaz del software de simulación LTspice y el uso de comandos en este simulador.
- 2.2 Realizar en LTspice el modelado de circuitos mixtos (configuración en serie y configuración en paralelo) que incluyan elementos resistivos.
- 2.3 Realizar mediciones en LTspice de circuitos electrónicos que tengan fuentes de voltaje alterno (AC) y voltaje continuo (DC).

3 MARCO TEÓRICO

3.1 Instalación de LTspice

Para instalar la herramienta de simulación LTspice se debe descargar el programa instalador de la sección "*Download LTspice*" de la siguiente página:

https://www.analog.com/en/design-center/design-tools-andcalculators/ltspicesimulator.html

3.2 Guía de uso de LTspice

En el siguiente enlace se presenta una guía rápida sobre las principales características y simulaciones que se pueden realizar con LTspice, se recomienda revisar los siguientes tópicos:

- Draft a Design Using the Schematic Editor
- Run and Probe a Circuit
- Simulate a Transient Response in a SMPS (Switching Mode Power Supplies)
- Simulate a Transformer

https://www.analog.com/media/en/simulation-models/spicemodels/LTspiceGettingStartedGuide.pdf?modelType=spice-models

3.3 Atajos de teclado en LTspice

Revisar los atajos de teclado existentes en LTSpice en el siguiente enlace:

https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletinsbrochures/ltspice_shortcutflyer.pdf?modelType=spice-models

3.4 Modelos de terceros en LTspice

Revisar la creación de modelos de terceros en LTspice en el siguiente video:

https://www.analog.com/en/education/education-library/videos/5579239882001.html

4 PREPARATORIO

4.1 Realizar el cálculo teórico de voltajes y corrientes DC del circuito de la **Figura 1** de acuerdo con los valores indicados en la **Tabla 1.**

Figura 1.Circuito mixto con fuentes de voltaje continua (DC).

	V1 [V]	V2 [V]	R1 [Ω]	R2 [Ω]	R3 [Ω]	R4 [Ω]
Lunes	10	5	220	1,8 k	2,2 k	1 k
Martes	15	7	560	1,5 k	3,3 k	1,2 k
Miércoles	20	10	820	1 k	2,2 k	1,5 k
Jueves	25	15	1,8k	1,5 k	470	2,2 k
Viernes	20	15	1,8 k	560	1 k	3,3 k

Tabla 1. Valores de elementos para el ejercicio de la Figura 1

4.2 Determinar los voltajes alternos en las resistencias del circuito de la Figura 2 y graficarlos en papel milimetrado de acuerdo con los valores indicados en la Tabla 2. Obtener la resistencia equivalente del circuito.

Figura 2. Circuito mixto con fuentes de voltaje alterna (AC).

	R1 [Ω]	R2 [Ω]	R3 [Ω]
Lunes	1 k	1 k	1,8 k
Martes	1 k	1,2 k	2,2 k
Miércoles	1 k	1,5 k	2,7 k
Jueves	1 k	1,8 k	3,3 k
Viernes	1 k	2,2 k	3,9 k

Tabla 2. Valores de elementos para el ejercicio de la Figura 1

5 EQUIPO Y MATERIALES

- 5.1 Hardware (proporcionado por el laboratorio)
 - Computadora IBM compatible
- 5.2 Software (proporcionado por el laboratorio)
 - LTspice

6 PROCEDIMIENTO

- 6.1 Explicación por parte del instructor acerca del funcionamiento del software LTspice, sus características, el entorno de trabajo y los elementos más comunes necesarios para el desarrollo de futuras prácticas.
- 6.2 Configuración de Fuentes: Simular el circuito de la Figura 3. Cambiar la señal de entrada por una señal cuadrada de frecuencia 7 kHz y 4 V de amplitud. Cambiar la señal de entrada por una señal triangular de frecuencia 3 kHz y 5 V de amplitud.

Figura 3. Circuito de prueba

6.3 Modelado del circuito de la Figura 1 en LTspice: realizar la simulación en DC (.op), tabular los datos obtenidos de voltaje y corriente de las resistencias y cotejar con los valores teóricos.

- 6.4 Modelado del circuito de la Figura 2 en LTspice: realizar la simulación en el dominio del tiempo (*simulation transient analysis*), colocar un tiempo adecuado para observar las formas de onda de forma clara y verificar la señal de voltaje de cada resistencia
- 6.5 Uso de elementos variables: modificar la simulación en LTspice del circuito de la Figura 1 usando un comando *Step*, con el cual R4 tomará los valores de 1,2 kΩ, 1,4 kΩ, 1,6 kΩ y 1,8 kΩ. Verificar el comportamiento del voltaje de las demás resistencias.
- 6.6 Realizar las modificaciones solicitadas por el instructor de la práctica.

7 INFORME

7.1 Conclusiones y recomendaciones.

8 REFERENCIAS

- Linear Technology Corporation, «AnalLinear Technology Corporation, «Analog Devices» [En línea]. Available: https://www.analog.com/.og Devices.» [En línea]. Available: https://www.analog.com/.
- R. Boylestad y Nashelsky, Electrónica: Teoría de circuitos y Dispositivos electrónicos, México: PEARSON EDUCACIÓN, 2004.
- T. Floyd, Dispositivo Electrónicos, México: PEARSON EDUCACIÓN, 2008
- D. Neamen, Dispositivos y circuitos Electrónicos, México: McGRAW HILL, 2012.

Elaborado por:	Ing. William Coloma Ing. Michael Curipallo Mgs. Aldrin Reyes
Revisado por:	Dr. Ricardo Llugsi – Administrador del Laboratorio de Electrónica Básica Dra. Diana Navarro Dr. Fernando Carrera MSc. Ramiro Morejón Dr. Diego Reinoso